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Abstract 

 The molecular basis of many early-onset eye diseases has been uncovered but the number 

of available drug treatments for improving deteriorated vision is still scarce. Consequently, there 

is a high demand for new drugs to treat these diseases. This review first provides a brief synopsis 

of the utility of zebrafish model for screening drugs with vision benefits. In particular, visual-

motor response (VMR), the activity response of larvae to a change in light stimuli, is proposed to 

serve as a simple and efficient tool for screening drugs that may improve vision in various 

zebrafish visual mutants. The second part of the review discusses the identification of novel drug 

candidates, with particular emphasis on naturally-derived chemicals including traditional 

Chinese medicines (TCMs) and nutritional therapies on retinal degenerative diseases. Many of 

these chemicals have been used in neuroprotection and/or have been consumed by many 

populations for good health and vision; thus, the screening of these chemicals with various 

zebrafish visual mutants would expedite the development of novel drugs for treating early-onset 

eye diseases.  
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Introduction 

Early-onset eye diseases, including photoreceptor dystrophy, retinitis pigmentosa (RP) 

glaucoma, cataract and corneal dystrophy, generally lead to visual impairment in children. These 

young patients will have a lifelong inconvenience and an expensive healthcare cost ahead of 

them. For example, it is estimated that patients with RP consumes $7317 more in annual 

expenditure than people without RP1. Even though surgery can treat some of these diseases such 

as cataract, there are not many effective treatments available for retinal disorders, as the damaged 

retina has no ability to regenerate itself once injured. Nonetheless, some retinal degenerative 

diseases are progressive and the visual loss is a gradual process; thus, this has opened a valuable 

therapeutic window for intervention. In particular, any drugs or therapies that may slow the 

progression of disease and preserve the residual vision can potentially improve the quality of life 

of patients and alleviate the financial burden on the health care system. Unfortunately, the 

process of drug discovery and development involves a significant amount of time and cost2; 

therefore, it would be particularly helpful to establish new approaches that can identify novel 

drug candidates in an economical and convenient manner.  

  

Traditionally, high-throughput drug screening involves assay plate preparation and 

reaction observation in solution and in cultured cells3,4. Large libraries of tens to hundreds of 

thousands of chemicals are applied to the testing system5. A number of assays can be done to 

reveal and determine the effects of a drug on protein sub-cellular localization, protein-protein 

interaction and signal transduction6. Combined with automated microscopy and advanced 

computational analysis, cell-based screening can rapidly reveal the possible function(s) of novel 

drug candidates7,8. Nonetheless, analyzing drug's effect in vitro cannot entirely replace the need 
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of in vivo screening. This is due to a drug’s action and metabolism are not only far more 

complicated in a multicellular organism, but also the efficacy of a drug depends on its capacity to 

restore and/or improve an impaired function. The latter issue is particularly true for screening 

drugs to improve vision, which is the output of multiple cell types in the eye in response to light 

stimuli. Therefore, it is essential to utilize in vivo models to screen drugs which can have a 

therapeutic value in vision improvement. Research that involves traditional laboratory animal 

models for drug screening is often costly but the zebrafish model can potentially bridge this gap 

and expedite drug discovery and development9.  

 

Zebrafish model for rapid drug discovery 

 There are six major reasons for supporting zebrafish as a good vertebrate model for drug 

screening, specifically on visual problems: 1) zebrafish's eye, particularly the retina, is 

anatomically similar to many vertebrates including human10. In fact, zebrafish is a diurnal animal 

and thus possesses richer color vision than the other classical models such as mice and rats. This 

feature facilitates research that is focused on diseases affecting cones; 2) zebrafish vision 

develops early during embryogenesis10 and thus visual problems can be examined rapidly; 3) 

zebrafish can be easily raised in the laboratory at a large scale in an economical manner11; 4) the 

fecundity of zebrafish is high compared with other animal models and each pair of fish can lay 

up to 100-200 embryos at a weekly interval. These two reasons allow a large number of embryos 

to be obtained for drug screening; 5) the embryo size is small and this enables the analysis of 

individual drug response in a 96-well plate; and 6) various drugs can be simply added to the 

water and absorbed by the larvae through their skin12. These last two reasons indicate that a large 

number of drugs can be rapidly administered to the zebrafish embryos.  
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The feasibility of high-throughput drug screening with zebrafish was first demonstrated 

by a screening of 1100 small chemicals that could affect various aspects of embryogenesis13, 

including heart patterning defects14. There was also a screening of 5000 small molecules that 

successfully revealed two suppressors of congenital aortic coarctation in a zebrafish grl mutant15; 

demonstrating the possibility of finding novel drugs to treat disease through the use of zebrafish 

mutants in high-throughput screening.  

 

Visual behavior of zebrafish as a means to study visual impairment and find treatment 

 The behavior of animal will change when there is a visual impairment. Thus, the 

characterization of visual behavior is an effective way to assess the presence of visual problem 

and visual improvement after drug treatment. To identify drugs that can improve vision in 

zebrafish mutants, it is necessary to identify a robust visual behavior that can be reliably 

characterized in a high-throughput manner. As a highly visual animal, zebrafish’s visual 

behaviors have been studied and applied frequently for genetic analysis of vision16,17. However, 

many of these behaviors are not suitable for high-throughput drug screening. For example, 

optokinetic response (OKR), a stereotypic eye movement in response to movement in the 

environment18–20, has been used in four genetic studies21–24 that identified many mutants with 

visual problems. Nonetheless, OKR comes with a drawback as it requires frequent transfers of 

larvae to viscous methylcellulose for immobilization. Even though the contemporary 

implementation of computer-assisted analysis25 may speed up the analyzing process, it is still not 

versatile enough for a high-throughput drug screening that requires the examination of different 

drugs at different concentrations, let alone the analysis of multiple fish lines. Recently, a photo-
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motor response (PMR) was used to screen 14000 drugs in 30 hours post-fertilization (hpf) 

embryos to identify neuroactive drugs26. PMR consists of a stereotypic series of motor behaviors 

elicited by a high-intensity light stimulus. However, the retina of 30 hpf embryos is immature 

and the first detectable visual response will not occur until at least 68 hpf27. Thus, PMR is less 

likely to be compatible for screening zebrafish mutants that have visual impairments.  

 

A novel visual-behavior assay has recently been utilized in a screen of 4000 drugs for 

identifying candidates that could alter sleeping behavior of fish larvae28. In this assay, zebrafish 

larvae were placed individually in each well of a 96-well plate, treated with different drugs, and 

monitored concurrently by ZebraBox (ViewPoint Life Sciences), an automated video-tracking 

system29. The embryos treated with different drugs elicited different locomotor behaviors in the 

light and dark phases. Remarkably, it was observed that a drastic response could be induced 

during the transition between light-on and off. This led to the subsequent development of visual-

motor response (VMR)30, a special adaption of the aforementioned assay, which is particularly 

suitable for high-throughput screening of drugs to improve vision.  

 

Potential application of VMR for high-throughput screening of drugs that can improve 

vision in larval zebrafish 

  In the VMR assay, larvae that are at least 5 days post-fertilization (dpf) would be first 

acclimatized to the machine environment for three hours, before being subjected to 30 minutes of 

light on and 30 minutes of light off for a total of three trials31. Different variations of the assay 

have been reported since the initial development of VMR32,33. While they were all based on the 

same light-on and off principle, there were differences in the acclimatization time, duration of 
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the light on and off, intensity of light, length of the whole assay and definition of activity. The 

VMR of visual mutants has been shown to be different from wild-type (WT) zebrafish30. In 

particular, the VMR of an eyeless chk mutant was completely abolished, suggesting that the 

response was mediated by vision. The VMR in another nrc mutant, which had defects in the ON 

ganglion cells, was attenuated. By testing the VMR in enucleated larvae, Fernandes and 

colleagues has recently demonstrated that there were two additional photosensitive brain regions 

that contributed to this response in addition to the eye32. These included the pineal gland and a 

domain in the hypothalamus that is specified by the Orthopedia transcription factor. Intriguingly, 

this study found that the chk mutant elicited a VMR by the light-off stimulus, even though it was 

substantially lower than the normal siblings. While it was proposed that the difference in the 

VMR parameters, including the activity definition and the length of the assay, might have 

contributed to the observed difference, a few interpretations about VMR can be drawn: 1) There 

is a vision-mediated component and non-vision-mediated component of VMR; and 2) The 

vision-mediated component mediates a distinctive fast response, including a large-angle turn (O-

bend) that is the most prominent in the first two minutes; while the non-vision-mediated 

components mediate another slower response, including a smaller-angle routine turn (R-turn) 

that is sustained for at least ten minutes.  

 

The vision-mediated component of the VMR is also supported by an early enucleation 

experiment that studied the development of larval startle response, defined as an increase in body 

twitch in two seconds after the interruption of light illumination27. This is essentially the early 

light-off phase of the VMR. Specifically, the enucleated embryos in this study did not show any 

startle response despite having an intact pineal photoreceptor and brain. It should be noted that 
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the light illumination in this study was substantially lower (~ 7 µW cm-2) than the ones utilized 

Zebrabox (69-8330 and 9032 µW cm-2), suggesting that the vision-mediated component of the 

startle response/VMR is more sensitive than the other non-vision-mediated components. 

Together, these observations indicate that analyzing the immediate part of the VMR and/or using 

a lower light intensity may maximize the difference in VMR that is mediated by the vision-

mediated component.  

 

The usage of this VMR assay for screening drugs to improve vision of visual mutants has 

several advantages: 1) it measures the improvement in an activity output that is substantially 

mediated by vision and hence directly shows the potential therapeutic value of a drug candidate; 

2) it does not require a prior knowledge of disease mechanism; 3) it alleviates the need to 

implement and use advance microscopy for screening histological improvement; and 4) it is 

scalable and can be conducted in a high-throughput manner, which can facilitate testing of 

multiple drug libraries with numerous visual mutants. Our laboratory is currently using the VMR 

assay to screen drugs that can potentially improve the altered response in a visual mutant (Figure 

1) with photoreceptor degeneration (Figure 2). This mutant has been specifically chosen because 

it possesses a point mutation that is also found in human patients suffering from early-onset 

photoreceptor degeneration. While the photoreceptors first develop normally in this mutant, they 

degenerate by 5 dpf.     

  

Despite its advantages, it should be noted that the VMR assay is not suitable for 

screening drugs for every type of eye diseases. Since the current format of the VMR assay 

requires the usage of larvae, it may not be applicable to screening drugs for eye diseases in which 
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the histological and VMR defects are late-onset. Specifically, zebrafish requires feeding to 

survive after 9 dpf; thus, the high-throughput application of VMR is not easily amenable after 9 

dpf and is the most compatible with drugs that may show a fast response. Even though it is 

possible to extend the screen beyond 9 dpf in a smaller-scale study by feeding the larvae; one has 

to consider the confounding factor caused by the possible variation in nutrients of the feed. A 

standardized diet may help alleviate this problem34 and may potentially extend the use of VMR 

to later larval stages. Nonetheless, this does not negate the utility of the zebrafish model for 

studying late-onset eye diseases and determining the long-term protective effects of the identified 

drugs in a smaller scale or the possible development of comparable high-throughput visual-

behavioral assay for adult fish in the future. Since it was also described above that there are non-

vision-mediated components in the VMR, it is essential to further characterize the promising 

drug candidates by additional methods (see conclusions). Together, these suggest that VMR is 

very suitable for a large-scale drug screening on visual mutants that manifest a visual defect at an 

early stage.   

 

Generation of zebrafish models of early-onset eye diseases for drug screening 

The establishment of the VMR assay allows for the screening of drugs that can improve 

vision with visual mutants of zebrafish. A number of these mutants have been generated through 

ethylnitrosourea (ENU)11 and retroviral35 mutagenesis. As discussed above, many mutants have 

been discovered by OKR and other visual-behavioral screens21,23,24. In addition, the same 

mutagenesis approaches have generated a great number of mutants that have morphological 

defects in the visual systems36–38. Many of these mutants affect early eye development and have 

detectable defects by 5 dpf; thus, they serve as valuable models for drug screening with the VMR 
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assay and studying the underlying mechanisms for various eye diseases39,40. There is an ongoing 

effort by the Zebrafish Mutation Project (http://www.sanger.ac.uk/Projects/D_rerio/zmp/) to 

knockout every gene in the zebrafish genome. The newly generated mutants have been deposited 

in the Zebrafish International Resource Center (ZIRC; http://zebrafish.org), a public repository of 

reagents. Therefore, it is anticipated that more visual mutants to become publicly available for 

translational research in the future. It is believed the first type of mutants that is useful for drug 

screening would be those that carry mutations in genes that cause human visual impairment and 

have a similar histological defects and alteration in visual behavior. 

 

In the meantime, there are two excellent approaches for generating targeted gene 

perturbation if a mutant is not available. The first one is TALEN (transcription activator-like 

effector (TALE) nuclease)41 which can be used to generate targeted disruption in the zebrafish 

genome42,43 and the second one is Tol2 transgenesis which can be utilized to drive the expression 

of an exogenous gene by various promoters44. The transgenesis is made efficient by the Tol2 

transposon element originally isolated from medaka45. Thus, the former approach allows for a 

rapid targeted disruption of the disease-causing genes identified from human genetics research, 

while the latter enables the generation of transgenic fish carrying a transgene that contains the 

same disease-causing mutation as in human and/or the mutated gene isolated from patients. 

Nonetheless, it should be noticed that the transgenic fish still contain two normal zebrafish 

alleles in the genome, which may complicate the downstream analysis; hence, this type of 

mutants requires careful histological confirmation to show clear signs of ocular impairments 

before their usage in drug screening.      
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Finding novel drugs, especially from naturally-derived chemicals, for treating eye disorders  

As described above, one major advantage of VMR-based drug screening is that it is 

possible to identify new drugs that can improve vision prior to the dissection of disease 

mechanism and drug function. Hence, this assay can be applicable to screening the established 

Western drug/chemical libraries and a plethora of naturally-derived chemicals from Eastern 

medical literature and nutrition sources. The contemporary high-throughput screening with the 

large Western drug/chemical libraries has identified a number of drugs that have been approved 

by the Food and Drug Administration for treating different diseases over the years5. It is very 

likely that new drugs for eye disorders will be discovered from these libraries.  

 

A number of failures of western drugs after years of research46 have prompted the search 

of additional new drug leads. Another promising group of chemicals that may benefit the eyes is 

naturally-derived compounds that have been consumed by many populations for good vision 

and/or have proven therapeutic values based on Eastern medical literature and nutritional 

concepts. This category of compounds includes traditional Chinese medicines (TCMs), herbal 

medicines, and nutritional therapies/supplements. They present as a novel source of chemicals 

for drug development47,48.  While many of these naturally-derived chemicals have been 

characterized due to their ability to act as antioxidants (See Box 1), it should be noted that their 

therapeutic values reported in the Eastern medical literature involved other possible properties or 

actions exerted in vivo. In particular, many TCMs and nutritional therapies aim at achieving a 

balance of the living system, so that desired health effects can be reached. Moreover, effective 

TCMs from the literature are often administered in complex formulations. The characterization 

and treatment philosophy of this type of chemicals constitute a whole body of knowledge and 
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challenges49 that is out of the scope of this review. Nonetheless, VMR-based screening, which 

does not require prior knowledge of drug action, can potentially be an excellent tool to expedite 

the characterization of these compounds.  

 

In the following, we will provide a brief review of several promising candidates, which 

we plan to screen and determine their capability on vision improvement with zebrafish mutants 

of retinal degeneration.  

 

I. Antioxidants recognized with protective effects on photoreceptors  

 There are at least three dietary antioxidants that have been investigated and established 

for their ability to protect photoreceptors from damages including oxidative stress in rat cell 

culture and whole animal. These include docosahexaenoic acid (DHA), Lutein (LUT) and 

zeaxanthin (ZEA). DHA is the major polyunsaturated fatty acid in the retina, which makes up 

35-60 percent of the photoreceptor outer segment50. It has been demonstrated to protect rat 

retinal photoreceptors from oxidative stress51 and ceramide-induced apoptosis52 in vitro. This 

anti-apoptotic effect was shown to be mediated by the ERK/MAPK pathway53. Interestingly, 

DHA not only was found to prevent photoreceptors from undergoing apoptosis but also was 

shown to enhance their survival during development54 and promotes differentiation55–57.  

Notably, DHA has been shown to enhance opsin expression and axonal outgrowth without 

affecting the expression of Crx, a transcription factor that determines the fate of rods and 

cones56. This supports DHA’s role in late stage differentiation, which was also shown to be 

mediated by the ERK/MAPK pathway53. Thus, this further suggests that photoreceptors use the 

same signal transduction pathway for controlling differentiation and apoptosis. For clinical 
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applications, DHA supplementation on patients with RP receiving vitamin A treatment was 

reported to slow the disease progression for two years58, while dietary intake of eicosapentaenoic 

acid (EPA) and DHA was demonstrated to decrease the likelihood of age-related macular 

degeneration (AMD)59.    

 

LUT and ZEA are two major components in the macula that possess antioxidant 

capability60,61. Treatment with LUT, ZEA, and DHA has been indicated to protect rat 

photoreceptors from apoptosis induced by oxidative stress61. Long-term dietary supplementation 

with ZEA has also been shown to reduce photoreceptor death in a light-damaged Japanese quail 

model62. Furthermore, ZEA and LUT promoted photoreceptor differentiation by increasing opsin 

expression and promoting development of outer segment61. There exists epidemiological 

evidence of intakes of LUT and ZEA can protect patients from acquiring various eye disorders 

such as AMD and cataracts63,64.  It appears that a dietary supplement of LUT/ZEA could 

decrease the likelihood of AMD65.  

 

II. Vitamin C and Vitamin E 

 Vitamin C or ascorbic acid serves as a cofactor in eight important enzymatic reactions, 

including collagen synthesis, carnitine synthesis, biosynthesis of norepinephrine from dopamine, 

addition of amide groups to peptide hormones, and modulation of tyrosine metabolism66. It also 

has the ability to perform antioxidant activities against oxidative stress since it possesses the 

capability to donate its electrons to prevent other compounds from oxidation. Vitamin E is the 

term for eight lipophilic compounds that consist of four tocopherols and four tocotrienols67. It is 

mainly known for its ability to act as a chain-breaking antioxidant that terminates the 
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propagation of lipid peroxidation. Vitamin C and E may directly interact with each other under 

conditions of oxidative stress as studies have indicated that ascorbic acid can either save α-

tocopherol from undergoing oxidation68–70 or allow α-tocopherol to regenerate from its oxidized 

form of α-tocopheroxyl radical71. Due to their antioxidant capabilities, vitamin C and E perhaps 

can be utilized simultaneously to improve the conditions of photoreceptor death. In fact, in two 

recent in vivo studies, treatment with a mixture of α-tocopherol, ascorbic acid, Mn(III) tetrakis 

porphyrin (MnTBAP) and -lipoic acid was found to reduce death of photoreceptors and 

preserve function of cones in the retinal degeneration 1 (rd1) mice72 and both rods and cones in 

the retinal degeneration 10 (rd10) mice73. When a single treatment of α-tocopherol was applied, 

cone survival was still promoted in the rd1 mice72. Therefore, combining various antioxidants 

together as a treatment may provide protective advantages for the photoreceptors. Despite these 

positive results in the laboratory research, it should be noted that there are clinical trials and 

epidemiological studies that reported different outcomes. These include a positive74 and no 

effect65,75–77  with vitamin A and C supplement on AMD progression and a deleterious effect 

with vitamin E supplement on RP progression78. (See Box 1 for a thorough discussion). These 

clinical observations indicate that not all antioxidants will necessarily act on all retinal diseases 

in the same manner. 

 

III. Resveratrol 

 Resveratrol (RSV) is a compound present abundantly in the Japanese medicinal plant 

Polygonum Capsidatum and grapevines79. It is also found in peanuts, pines, and red wines. It 

possesses antioxidant properties that may offer health benefits, including reducing the risk of 

cardiovascular disease and eye disorders. For example, treatment of retinal pigment epithelium 
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(RPE) cell culture by RSV has been shown to protect these cells from H2O2-induced cell death80. 

This protection was mediated through the inhibition of MAPK. In the meantime, the same 

treatment also reduced RPE cell proliferation. In a study of light-induced retinal degeneration in 

mice, it has been demonstrated that oral-administration of RSV suppressed the deleterious effects 

on retinal structure and function by light damage81. Furthermore, intraocular injection of RSV 

has been indicated to suppress retinal vascular degeneration caused by ischemia-reperfusion 

(I/R) injury in mice, while orally-administrated RSV could reduce capillary degeneration 

induced by endoplasmic reticulum stress82. Interestingly, two recent studies have also shown that 

RSV could inhibit endothelial cell proliferation in vitro83 and pathologic retinal 

neovascularization in very low-density lipoprotein receptor mutant mice84. These findings 

suggest that RSV played multiple roles on maintaining the health of retinal vasculature.  

 

IV. Schisandrin A & B (Sch A & B) 

 Sch A & B are two active components of Fructus Schisandrae, a fruit that is commonly 

consumed by the Chinese for sustaining health and vision. In Chinese medicine, the fruit is 

believed to provide nourishment as well as therapeutic actions. For example, Sch B has been 

demonstrated to possess antioxidant activity and protect heart cells against oxidative damage in 

hypoxia/reoxygenation-induced apoptosis85 and in rats suffered from I/R injury86. This protective 

effect was mediated by the activation of glutathione antioxidant87 and heat shock88 responses. 

The activation of the protective genes in the glutathione antioxidant response has also been 

determined to be regulated by the ERK/Nrf2 pathway89. Despite these good protective effects 

against oxidative stress, the extent to which these schisandrins inhibit retinal degeneration is 
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unclear. Our group is currently conducting a preliminary investigation of Sch B on improving the 

histology and visual behavior of the retinal degeneration mutant as shown in Figures 1 and 2.  

 

V. Lycium 

  Lycium barbarum is a plant that produces a fruit that is commonly referred to as goji/ 

gouqi berry or wolfberry. The fruit is harvested for health food and supplement purposes, 

specifically for good vision. It has been known for its powerful antioxidant properties and 

potential benefits for cardiovascular system and inflammation. Furthermore, its extract has been 

extensively characterized to have neuroprotective, neurogenic, and antioxidative effects in both 

retinal and non-retinal systems90–95. In the retinal system, it has been tested that oral 

administration of Lycium promoted the survival of retinal ganglion cells (RGCs), the target cell 

type that is affected by glaucoma, in an ocular-hypertension rat model90. Notably, the RGCs 

were protected even though the elevated intraocular pressure was not significantly altered. This 

protective effect on RGCs was mediated by the up-regulation of βB2-crystallin92. Pretreatment 

with Lycium before I/R injury has also been demonstrated to protect the retinas from oxidative 

damage and apoptosis93.  

 

VI. Flavonoids  

 Isoliquiritigenin (ISL) is a flavonoid existing in Licorice. It exhibits many desirable 

properties such as antioxidant, anti-inflammatory, anti-bacterial, anti-viral and anti-tumor 

activities96. It has been shown to suppress neovascularization in experimental ocular 

angiogenesis models97 and further proposed to work as a plausible therapy for the wet form of 

AMD, which exists an exuberant growth of blood vessels. Catechins are flavonoids that present 
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richly in green tea leaves. They have been confirmed to possess anti-oxidative property in eye 

research83,98. In particular, epigallocatechin gallate (EGCG) is a commonly used catechin in 

research and there are a number of reports demonstrating its protective role on retina. It produced 

a protective effect on RGCs after optic nerve axotomy99, optic nerve crush100 and intraocular 

pressure increase101 when administered via intraperitoneal, intraperitoneal and oral, and oral 

route respectively. Moreover, orally-administered EGCG has been demonstrated to attenuate 

photoreceptor damage induced by a light insult and preserve the electrophysiological properties 

of the retina102. A similar protective effect against light-induced damage has also been uncovered 

in RGCs101. Intraperitoneally-administrated EGCG also protected the retina after I/R injury103,104, 

which could be mediated through a suppression of nitric oxide synthase expression104.  

Furthermore, EGCG also protected retina105 and RGCs103 against oxidative stress induced in vivo 

and in vitro, respectively. There is also a report on EGCG’s protective effect on Müller cells 

against catechol-induced toxicity in vitro106. In humans, a short-term oral administration of 

EGCG for three months has been reported to improve the pattern-evoked electroretinogram 

(ERG) in open-glaucoma patients107. Thus, these studies have established EGCG as a good 

candidate for retinal protection. In addition to EGCG, other catechin isoforms have been 

demonstrated to reach a higher concentration in the eye in vivo98. These isoforms are potentially 

useful therapeutic agents for further characterizations.   

 

Bioavailability of drugs and therapeutic window in zebrafish  

Drug absorption and distribution are two important issues to consider in drug 

development and screening. Eye drugs are usually delivered by topical or intravenous 

administration, or intravitreal injection108. The first two routes are more amenable in drug 
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screening and are the likely mechanisms through which the zebrafish larvae absorb the drugs into 

the eyes. The drugs that are dissolved in water can potentially diffuse through the larval body 

and get into the blood circulation and/or through the ocular surface as if it is applied topically. In 

the latter case, they may diffuse into the eye through the permeation of cornea, conjunctiva and 

sclera, which are exposed to the water continuously. 

 

While it is currently not clear about the bioavailability of drugs in larval eye, which has 

to be determined case by case, a few investigations have laid down important foundations for its 

characterization. First, there are studies that have attempted to determine the bioavailability of 

the drugs in the whole embryo109,110. In particular, these studies showed that the hydrophobicity 

of the drug, as calculated by the logarithm of the octanol:water partition coefficient (LogP), 

could be a good indicator of the general bioavailability. Specifically, drugs with LogP value > 1 

have been proposed to be used in general screen111 because they were readily absorbed by fish 

embryos and showed specific response in a screen of drugs that cause bradycardia110. The drugs 

that had a LogP below 1, even though were bioactive, required microinjection to elicit the effect. 

It can be speculated that these hydrophobicity rules can potentially be applicable to the drugs that 

are diffusing into the eye directly. Second, drugs that diffuse into the body and get into the 

general circulation have to pass through blood-retinal barrier (BRB) and/or blood-aqueous 

barrier (BAB) before they can elicit their effect. Zebrafish have functional BRB112,113 and blood-

brain barrier (BBB)112–114 that are analogous to the other mammals and begin to function at 

around 3 dpf; while the BAB has not been characterized in fish yet. It should be noted that a drug 

that does not show an alteration in VMR can be a false negative caused by a lack of diffusion 

and/or a problem in getting through the BRB and BAB. If necessary, the specific bioavailability 
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in the eye can be determined by methods such as liquid chromatography-mass spectroscopy (LC-

MS)109.  

 

With regards to the therapeutic window, it has to be determined case by case as well. For 

example, the study of retinal degeneration has to take into account of the process of 

photoreceptor development. Zebrafish photoreceptors begin to differentiate at 48-50 hpf10,115 and 

the first visual behavior is detected at 68 hpf27. To avoid unnecessary drug exposure during early 

embryogenesis, treatment starting at around 2 or 3 dpf is a logical choice. Alternatively, 

treatment can begin at the stage when the first detectable degeneration occurs. For the visual 

mutant that we are currently characterizing, 5 dpf would be a reasonable choice.    

 

Conclusions and outlook 

The VMR assay of zebrafish is potentially a powerful approach for screening drugs that 

can affect visual behavior. It also has a huge potential in characterizing naturally-derived 

chemicals, in particular TCMs, for improving vision for various eye disorders. Since it has 

become feasible to generate targeted knock-out in zebrafish, mutants of human eye diseases can 

be created for rapid characterization of potential drug therapies. While zebrafish is certainly not 

easily amenable to the ultra-high throughput screening that involves hundreds of thousands of 

compounds, it can be envisioned that the zebrafish in vivo drug screening could complement 

with the in vitro biochemical and/or cellular-based screening by following up leads that are 

identified from these other faster screens. In the meantime, a screen with a few thousand 

chemicals with the zebrafish model is definitely feasible28.  
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In addition, the effect of drugs that shows a positive effect in the zebrafish VMR 

screening can be further characterized at different levels: 1) At the behavioral level, the drug-

treated larvae can be tested by OKR; 2) At the physiological level, the drug-treated retinas can be 

analyzed by ERG116,117, a measurement of the electrical activity of various retinal cell type under 

light stimulus, as this can help localize the functional improvement to specific cell type(s); 3) At 

the cellular level, the drug-treated eyes can be analyzed by various histological and 

immunohistochemical methods118–120; 4) At the pharmacological level, the bioavailability of the 

drug in vivo can be determined by LC-MS109; and 5) At the molecular level, the components in 

the disease-causing gene network that are affected by the drug treatment can potentially be 

identified by expression studies. Our group has not only developed unique micro-dissection and 

expression analysis approaches for retinas and RPE121–123 but also successfully utilized them to 

analyze a retinal dystrophic mutant118,119,124.  Together, they have created an efficient pipeline to 

discover and analyze novel drugs for better vision in zebrafish.  

 

Box 1 – Antioxidative therapies for retinal degenerative diseases 

Due to the constant exposure of photoreceptors to light, which can induce free radical 

formation and a high oxygen-tension environment, oxidative stress/damage has been proposed as 

one of the theories for photoreceptor death in retinal degeneration72,125–127. In fact, hyperoxia has 

been shown to cause photoreceptor death in the P23H retinal-degeneration rats128 and normal 

mice129. Additionally, oxidative damage has been reported to be the underlying cause of 

photoreceptor death in the Pro347Leu-rhodopsin transgenic pigs130. This oxidative stress/damage 

theory has led to the proposal of antioxidative treatment could delay late-stage photoreceptor 

dystrophy126. As described in the review, there have been promising successes in using 
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antioxidants on improving vision of two models of RP mice72,73. Nonetheless, the clinical trials 

of different types of antioxidants on treating human retinal degeneration have mixed outcomes. 

For example, a number of long-term clinical trials have indicated that vitamin E supplement did 

not decrease the incidence and/or slow the progression of AMD75–77. One of these studies has 

also suggested that vitamin C supplement had no effect on AMD incidence75. The failure of 

preventing the progression of AMD by vitamin E and C has also been indicated by an 

epidemiology study on dietary intake65. However, a combination supplement of vitamin C, E, 

carotene and zinc reduced the development of advanced AMD in another trial74. In addition, 

DHA supplemented with EPA and dietary LUT/ZEA intake have been reported to decrease the 

likelihood of AMD in two epidemiological studies59,65. This type of mixed outcomes has also 

been illustrated by a classical clinical trial of RP78, in which vitamin A supplement slowed the 

progression of disease while vitamin E had the opposite effect. A subsequent trial conducted by 

the same group of authors on DHA supplement in conjunction with vitamin A initially showed 

no effect131; however, a careful analysis of the subgroups indicated that if the patient had not 

been taking vitamin A beforehand, addition of DHA slowed the course of disease for two 

years58.  All these studies have indicated that not all antioxidants would work for all diseases. 

The efficiency depends on the types of disease, dosage of the drugs, time of drug administration 

and the underlying mechanism of the antioxidative property. The latter also suggests that a 

combinatorial therapy is necessary to achieve some protective effects, an idea that has been 

supported by the aforementioned animal studies72,73 and clinical trials58,59,65,74. Therefore, it 

would be critical to test multiple drugs on various disease models in an efficient manner as 

offered by zebrafish.  
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Figure Legends 

Figure 1. VMR is altered in a zebrafish mutant that suffers from retinal degeneration. The 

VMR of 24 WT (black trace) and 24 visual mutants (red trace) with photoreceptor degeneration 

(Figure 2) were recorded at 5 dpf. The activity is defined as the fraction of a second that a larva 

moves. Each activity trace is an average of the response of 24 larvae over three consecutive 

trials. In this example, light illumination was turned on (A) or off (B) at 60 s (illustrated by a 

white and a black bar above the graph, respectively). (A) The light-on stimulus elicited an 

immediate and intense response in WT; then, the larvae promptly adapted and returned to a 

baseline activity level. The visual mutant, on the other hand, only showed a minuscule 

immediate response to the light-on stimulus compared with WT. (B) The light-off stimulus again 

triggered an instantaneous and strong response that sustained for more than two minutes in WT. 

The activity gradually diminished and returned to the baseline level by the end of a 30-min light-

off phase; and the first 60 s in (A) illustrates this baseline activity level immediately before the 

change of light stimulus at 60 s. On the contrary, the visual mutant did not respond to the light-

off stimulus.   

 

Figure 2. A zebrafish model of retinal degeneration. Immunohistological analysis of the 

visual mutant in Figure 1 demonstrated that the photoreceptors were degenerating. Top row: WT 

retinas stained with anti-zpr1 for red/green double cones (left, yellow) and anti-zpr3 for rods 

(right, yellow). Bottom row: retinas of the visual mutant stained with anti-zpr1 (left, yellow) and 

anti-zpr3 (right, yellow). The cell nuclei were stained with DAPI (blue). These immunostaining 

analyses were conducted with 8 dpf embryos with standard procedures119. The mutant embryos 

collected at 5 dpf revealed similar photoreceptor degeneration.  



This is a non‐final version of an article published in final form in “Zhang LY, Chong L, Cho J, Liao PC, Shen 
F, Leung YF. Drug Screening to Treat Early‐Onset Eye Diseases: Can Zebrafish Expedite the Discovery? 
Asia‐Pac J Ophthalmol 2012; 1:374‐383.”; which is available at 
http://journals.lww.com/apjoo/Abstract/2012/11000/Drug_Screening_to_Treat_Early_Onset_Eye_Dise
ases__.11.aspx 
 

34 
 

Figures 

 

Figure 1 



This is a non‐final version of an article published in final form in “Zhang LY, Chong L, Cho J, Liao PC, Shen 
F, Leung YF. Drug Screening to Treat Early‐Onset Eye Diseases: Can Zebrafish Expedite the Discovery? 
Asia‐Pac J Ophthalmol 2012; 1:374‐383.”; which is available at 
http://journals.lww.com/apjoo/Abstract/2012/11000/Drug_Screening_to_Treat_Early_Onset_Eye_Dise
ases__.11.aspx 
 

35 
 

 

 

 

Figure 2 

 


